Energetic landscape of α-lytic protease optimizes longevity through kinetic stability

Sheila S. Jaswal*, Julie L. Sohl, Jonathan H. Davis* & David A. Agrawal

Howard Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143-0448, USA

During the evolution of proteins the pressure to optimize biological activity is moderated by a need for efficient folding. For most proteins, this is accomplished through spontaneous folding to a thermodynamically stable and active native state. In the extracellular bacterial α-lytic protease (αLP) these two processes have become decoupled. The native state of αLP is thermodynamically unstable, and when denatured, requires millennia (τd ~ 1,800 years) to refold. Folding is made possible by an attached folding catalyst, the pro-region, which is degraded on completion of folding, leaving αLP trapped in its native state by a large kinetic unfolding barrier (τd ~ 1.2 years). αLP faces two very different folding landscapes: one in the presence of the pro-region controlling folding, and one in its absence restricting unfolding. Here we demonstrate that this separation of folding and unfolding pathways has removed constraints placed on the folding of thermodynamically stable proteins, and allowed the evolution of a native state having markedly reduced dynamic fluctuations. This, in turn, has led to a significant extension of the functional lifetime of αLP by the optimal suppression of proteolytic activity.

*Present addresses: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA (S.S.J.); Lexogen Pharmaceuticals, 125 Hartwell Avenue, Lexington, Massachusetts 02421, USA (J.H.D.).

© 2002 Macmillan Magazines Ltd

letters to nature

Studies with H-2K cells

H-2K cells derived from the muscle of heterozygous H-2K[–]-<i>ts</i>-AS8 transgenic mice¹⁷ were differentiated¹⁸ and transfected with adenoviruses containing control vector or dominant-negative AMPK². Five days later, cells were treated with leptin (100 nM) for 2 h in HEPES-buffered saline containing 5 mM glucose, and the AMPK activity and phosphorylation of ACC were examined.

Measurement of catecholamine and AMPK, ADP, ATP content

Soleus muscles were homogenized with 0.5 N perchloric acid and centrifuged. We measured total catecholamine content in the supernatant by a radioenzymatic assay kit (Amersham Pharmac). AMP, ADP and ATP were determined by anion exchange chromatography using a SMART system (Amersham Pharmac).¹⁹

Western blot analysis

Phosphorylation of the α-subunit of AMPK and ACC in soleus lyases (40 μg of protein) was determined with 4–15% gradient SDS acrylamide gels using antibodies against the α-subunit of human AMPK (Cell Signaling) and streptavidin–horseradish peroxidase (Amersham Pharmac).²⁰

Statistical analysis

All values are the mean ± s.e.m. Data were evaluated by factorial analysis of variance and Newman–Keuls multiple range test. The difference was considered to be significant if <i>P</i> < 0.05.

Received 28 August; accepted 12 October 2001.

2. Muoio, D. M. et al. Phosphorylation of the α-subunit of AMPK and ACC in soleus lyases (40 μg of protein) was determined with 4–15% gradient SDS acrylamide gels using antibodies against the α-subunit of human AMPK (Cell Signaling) and streptavidin–horseradish peroxidase (Amersham Pharmac).²⁰

© 2002 Macmillan Magazines Ltd

letters to nature

Energy landscape of α-lytic protease optimizes longevity through kinetic stability

Sheila S. Jaswal*, Julie L. Sohl, Jonathan H. Davis* & David A. Agrawal

Howard Hughes Medical Institute and the Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143-0448, USA

During the evolution of proteins the pressure to optimize biological activity is moderated by a need for efficient folding. For most proteins, this is accomplished through spontaneous folding to a thermodynamically stable and active native state. In the extracellular bacterial α-lytic protease (αLP) these two processes have become decoupled. The native state of αLP is thermodynamically unstable, and when denatured, requires millennia (τd ~ 1,800 years) to refold. Folding is made possible by an attached folding catalyst, the pro-region, which is degraded on completion of folding, leaving αLP trapped in its native state by a large kinetic unfolding barrier (τd ~ 1.2 years). αLP faces two very different folding landscapes: one in the presence of the pro-region controlling folding, and one in its absence restricting unfolding. Here we demonstrate that this separation of folding and unfolding pathways has removed constraints placed on the folding of thermodynamically stable proteins, and allowed the evolution of a native state having markedly reduced dynamic fluctuations. This, in turn, has led to a significant extension of the functional lifetime of αLP by the optimal suppression of proteolytic activity.

*Present addresses: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA (S.S.J.); Lexogen Pharmaceuticals, 125 Hartwell Avenue, Lexington, Massachusetts 02421, USA (J.H.D.).
probably other pro-proteases and proteins functioning under extreme conditions—has evolved kinetic stability via unique native-state properties in addition to the large unfolding barrier (Fig. 1), as a means to achieve optimal proteolytic resistance, thereby extending biological function.

This proposal raises the question of how native-state properties arising from kinetic stability lead to effective protease resistance. As between four and eight residues of the substrate peptide chain are required to fit in a precise manner into the deep cleft that forms the protease active site, flexible regions of a protein are the most accessible targets for proteolysis. Even proteins lacking proteolytically accessible flexible loops in their native states are conformationally dynamic, constantly sampling open, proteolytically vulnerable conformations in processes ranging from small breathing motions to global unfolding: a finding that has been well established from native-state hydrogen exchange studies. Thus, proteolytic degradation can be described by the following conformational equilibrium reaction:

\[
\text{Opening} \quad \text{Cleavage} \\
\text{Native} \quad \text{Open/protease accessible} \quad \text{Cleaved}
\]

Therefore, to optimally avoid proteolytic attack and prolong its lifetime, a protein must not only eliminate native-state proteolysis but also restrict those unfolding and dynamic opening events leading to protease accessibility.

To test whether αLP shows restricted native-state dynamics in addition to its severely restricted global unfolding, we assessed the ability of water to penetrate the protease by hydrogen–deuterium exchange (H–X) monitored by two-dimensional nuclear magnetic resonance (NMR) spectroscopy. H–X is a sensitive and residue-specific probe of conformational fluctuations based on the rate at which amide protons exchange with solvent deuterons. Amide protons buried in the core of a protein are protected from solvent exchange. The degree of protection from exchange is quantified using protection factors \(P_I \) corresponding to the ratio of the intrinsic exchange rate \(k_{\text{int}} \) of the solvent-exposed amide to the observed exchange rate \(k_{\text{obs}} \): \(P_I = k_{\text{int}}/k_{\text{obs}} \). Protons on the surface or in dynamic regions of the protein sampling partially unfolded conformations exchange much more rapidly and have lower \(P_I \) values than those in rigid regions of the protein.

As shown in Fig. 2, αLP displays extremely high protection from H–X across the entire molecule. Although most proteins typically display a “slow exchange core” of only 3–8 residues with their highest \(P_I \) values ranging from 10^4 to 10^5, more than half of the amide protons of αLP (103) have \(P_I \) values greater than 10^8. Notably, 31 of those amide protons display \(P_I \) values greater than 10^10; they are so highly protected that no exchange was measured at all, even after six months at pH 9, corresponding to \(P_I \) values of >10^30. Not only is this degree of protection among the highest to be measured in a protein, but the most slowly exchanging residues are spread throughout both domains of the protein instead of being localized to one discrete “core,” as is usually seen. Therefore, αLP has a conformational rigidity well beyond that seen for traditional, thermodynamically stabilized proteins.

The high degree of rigidity observed by H–X extends previous thermodynamic measurements demonstrating that the native state of αLP is enthalpically favoured over its partially unfolded intermediate by 18 kcal mol\(^{-1}\) (ref. 1), and as a consequence, its thermodynamic instability must derive from an excessive loss in entropy during the course of folding. A possible source for this unusually large entropy decrease is the high number of glycines found in the sequence of αLP and all other pro-region-containing members of the chymotrypsin family (18% on average compared with 9% in

![Figure 1](image1.png)

Figure 1 Folding free-energy diagrams for thermodynamic comparison with kinetic stability. ΔG, free energy difference. a, A typical protein that folds on its own to a thermodynamically stable native state (N) is in equilibrium with its unfolded states (U), therefore it is constantly sampling protease-accessible conformations. b, In the absence of the pro-region (solid line) the large barrier prevents the native state of αLP (N) from being in equilibrium with the more stable intermediate (I) and other unfolded conformations. In the presence of the pro-region (P; dashed line) the barrier is lowered and N is stabilized. Refolding rates were determined by measuring an increase in αLP activity owing to formation of N over time during incubation of I in the absence or presence of pro. The unfolding rate was determined from fluorescence measurements of inactive S195A αLP unfolded in varying amounts of denaturant and extrapolated to water. Experiments were performed at 4°C, pH 5.0 (ref. 1).

![Figure 2](image2.png)

Figure 2 Hydrogen-exchange protection of αLP. a, b, Ribbon (a) and space-filling (b) representations of αLP coloured by amide protection factors. Residues with amide protection factors <10^3.8 are coloured grey. Residues with protection factors of 10^3.8 to 10^10.7 are coloured from red to blue. (A table listing the calculated protection factors at each pH is included as Supplementary Information.) The entire protease molecule is shown in a. A slice through the middle of the molecule in b reveals protection patterns in its interior. Figures were generated using MIDAS54.
homologues lacking pro-regions). High glycine content would increase the entropy of unfolded states, but could also lead to greater native-state rigidity and increased proteolytic resistance by allowing tighter turns and tighter packing.

To assess whether the unusual dynamic properties of αLP sufficiently restrict conformational fluctuations to enhance proteolytic stability, we directly compared the lifetimes of αLP and its thermodynamically stabilized11,12 mammalian homologues, chymotrypsin and trypsin, under highly proteolytic conditions. Survival assays were set up in which equimolar amounts of all three proteases were mixed and incubated at pH 5, 7 and 8, providing a nearly 1,000-fold variation in proteolytic activity. Because the substrate specificities of the enzymes are orthogonal, it was possible to assay the survival of each protease over time by measuring the enzymatic activity of the mixture on three different chromogenic substrates, specific for each protease. The biological activity of αLP remains virtually unchanged, whereas its mammalian counterparts are readily destroyed at rates 30% more than trypsin. Nor is the longer lifetime of αLP due to an ability to remain active when cleaved. At pH 7, the rates of cleavage monitored by gel electrophoresis for all three proteases are within twofold of their inactivation rates (Fig. 3b and Table 1). Therefore, αLP has the ability to withstand proteolysis and autoproteolysis for months longer than its thermodynamically stabilized counterparts.

We next determined whether αLP has a protease resistance that is optimized to the greatest extent possible. Given the very slow rate of αLP global unfolding, the most sensitive measure of optimization for proteolytic resistance is whether local unfolding transitions that could lead to proteolysis at a faster rate than through global unfolding have also been suppressed. This was examined quantitatively by comparing the rate of inactivation of αLP through autoproteolysis, measured by loss of enzymatic activity, to its rate of global unfolding in the absence of proteolysis, measured by following the fluorescence decrease during unfolding of an inactive variant, S195A αLP (active site Ser replaced by Ala) (Fig. 4). The rate of αLP autoproteolysis is 0.04 day−1; the global unfolding rate is 0.02 day−1. The twofold difference in rate may be due to a greater rigidity at the molecular level demonstrated by H–X successfully restricting local unfolding fluctuations so that only global unfolding, which occurs on a year timescale, leads to proteolytic accessibility.

These results provide the first functional rationale, to our knowledge, for the existence of pro-region-dependent folding. The observed suppression of both local and global unfolding transitions must be the direct consequence of an almost perfectly cooperative barrier to unfolding. Such extreme cooperativity comes at a significant energetic cost: the native state of αLP is not thermodynamically stable and can be reached only with the help of its pro-region. Thus, the development of desirable native-state properties has been made possible only by the transient existence of the pro-region, which has allowed the energetic landscape of the native state to evolve independently of the folding landscape.

Kinetic stability provides a novel mechanism for the evolution of optimal functional properties. When coupled with pro-region-dependent folding it provides for enhanced longevity in degradatory environments not only for αLP, but probably for a wide array of pro-region-containing proteases and other secreted enzymes. In addition, kinetic stability can function as a timer to regulate biological function in non-proteolytic proteins that have an efficient folding pathway13. Examples include serpins14, membrane fusion proteins such as influenza haemagglutinin15,16 and possibly HIV gp41 (ref. 17), and heat-shock transcription factor18. Kinetic stability is also a fundamental aspect of many human amyloid diseases, in

Table 1: Survival assay rates

<table>
<thead>
<tr>
<th>pH</th>
<th>Protease</th>
<th>Inactivation rate (day−1)</th>
<th>Cleavage rate (day−1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>αLP</td>
<td>0.005 ± 0.001</td>
<td>0.01 ± 0.002</td>
</tr>
<tr>
<td>5</td>
<td>Trypsin</td>
<td>0.5 ± 0.02</td>
<td>0.29 ± 0.05</td>
</tr>
<tr>
<td>5</td>
<td>Chymotrypsin</td>
<td>0.06 ± 0.01†</td>
<td>0.07 ± 0.05</td>
</tr>
<tr>
<td>7</td>
<td>αLP</td>
<td>0.006 ± 0.001</td>
<td>0.009 ± 0.007</td>
</tr>
<tr>
<td>7</td>
<td>Trypsin</td>
<td>0.83 ± 0.05</td>
<td>0.8 ± 0.2</td>
</tr>
<tr>
<td>7</td>
<td>Chymotrypsin</td>
<td>1.43 ± 0.08</td>
<td>0.9 ± 0.1</td>
</tr>
<tr>
<td>8</td>
<td>αLP</td>
<td>0.003 ± 0.001</td>
<td>ND</td>
</tr>
<tr>
<td>8</td>
<td>Trypsin</td>
<td>0.62 ± 0.05</td>
<td>ND</td>
</tr>
<tr>
<td>8</td>
<td>Chymotrypsin</td>
<td>2.22 ± 0.07</td>
<td>ND</td>
</tr>
</tbody>
</table>

Inactivation values indicate the rate of loss of enzyme activity on chromogenic substrate. Cleavage values indicate the rate of loss of a band on gel. The pH independence of the rate of αLP inactivation indicates that the unimolecular unfolding reaction is rate-liming (see text), not the bimolecular cleavage reaction. ND, not determined.

† Chymotrypsin dimers at pH 5 (ref. 23), leading to an anomalously slow rate of inactivation (see text).

Figure 3 Survival assay at pH 7, 25°C. a, αLP (diamonds) is more resistant to proteolysis than chymotrypsin (circles) and trypsin (squares), as monitored by loss of proteolytic activity of the mixture on three different chromogenic substrates specific for each protease. b, Quantification of the loss of intact protein monitored by SDS–polyacrylamide gel electrophoresis.

Figure 4 Autolysis compared with global unfolding rate. At 25°C, 1 M GdnHCl, where local unfolding is promoted, the rate of autoproteolysis of the active enzyme (open symbols) monitored by loss of proteolytic activity is less than twofold faster than the rate of global unfolding of the inactive enzyme (filled symbols) monitored by loss of fluorescence.
which a barrier separating the native conformation from an inactive or even toxic conformation is surmounted over time or lowered through mutation or perturbed conditions. The use of kinetic stability highlights the importance of the role of protein-folding energetics and dynamics, beyond simply specifying the active conformation, in critically influencing biological activity and lifetime.

Methods

Protein expression and purification

αLp and S195A αLp were expressed in *Escherichia coli* and purified as described. Rat trypsinoxin was expressed in *Pichia* and purified as described. Secreted protein auto-activated to trypsin, which was purified as follows: supernatant from cells was slowly brought to 4.5 M NaCl, loaded onto a phenyl sepharose fast-flow column, washed with 50 mM MES at pH 6.0, 4.5 M NaCl then eluted with 50 mM MES at pH 6.0. After dialysing to remove NaCl, the eluted protein was loaded onto a p-amino benzamidine agarose column, washed with 50 mM Tris at pH 7.5 and eluted with 100 mM acetic acid into fractions containing 1/20 volume 0.5 M sodium citrate at pH 4.5. Fractions with active protein were pooled and dialysed into 1 mM HCl and assayed for activity as described.

Hydrogen exchange

Amide exchange of wild-type αLp was initiated by the addition of protonated 15N-labelled protease to one of the following buffers containing >97% D2O: 100 mM NaPO₄, 100 mM NaCl and 2.5 mM NaOAc(d3) at pH 6.84; 100 mM Tris (deuterated), 100 mM NaCl and 2.5 mM NaOAc(d3) at pH 6.0; or 100 mM NaBO₃, 100 mM NaCl and 2.5 mM NaOAc(d3) at pH 8.0. After dialysing to remove NaCl, the eluted protein was loaded onto a p-amino benzamidine agarose column, washed with 50 mM Tris at pH 7.5 and eluted with 100 mM acetic acid into fractions containing 1/20 volume 0.5 M sodium citrate at pH 4.5. Fractions with active protein were pooled and dialysed into 1 mM HCl and assayed for activity as described.

Survival assays

A concentration of 6.5 μM αLp, trypsin and chymotrypsin (TLCK (tosyl-L-lysine chloromethyl ketone)-treated; Worthington) were incubated together at 25°C in 10 mM CaCl₂, 50 mM KCl, 10 mM KSCN, 10 mM KOAc at pH 5.0, 50 mM MOPS at pH 7.5, 50 mM HEPES at pH 7.0, or 100 mM Tris at pH 8. Aliquots were removed over time and the survival of the individual proteases was measured on the basis of their activities, which could be distinguished given their non-overlapping specificities for different substrates (succinyl-Ala-Pro-Ala-pNA, succinyl-Ala-Ala-Pro-Arg-pNA, succinyl-Ala-Ala-Pro-Leu-pNA, used for αLp, trypsin and chymotrypsin, respectively, all substrates at 1 mM in 10 mM CaCl₂, 100 mM Tris at pH 8). Cleavage of the proteases during survival assays was monitored by quantifying the amide assignments at high pH were confirmed by comparing the NOESY heights were taken from the processed data and used to calculate the observed exchange rates. 2D (nuclear Overhauser enhancement spectroscopy) crosspeaks with those from a lower T. Baird and C. Craik for assistance with trypsin purification. S.S.J. was supported by a

Acknowledgements

We thank Y. Shibata for assistance with hydrogen exchange experiments, and J. Harris, T. Baird and C. Craik for assistance with trypsin purification. S.S.J. was supported by a Howard Hughes Medical Institute predoctoral fellowship. Research funding was provided by Howard Hughes Medical Institute.

Competing interests statement

The authors declare that they have no competing financial interests. Correspondence and requests for materials should be addressed to D.A.A. (e-mail: agard@mgm.ucsf.edu).

Global unfolding

Fluorescence measurements of the inactive mutant S195A αLp at 1.75 μM in 0.98 M Gdn·HCl, 10 mM KOAc at pH 5.0 were made with excitation at 283 nm, emission 322 nm in an 8100LS-Aminco fluorimeter connected to an external water bath set to 25°C. The sealed fluorescence cuvette was maintained between measurements in a 25°C incubator. Received 2 August, accepted 6 November 2001.