The α-lytic protease pro-region does not require a physical linkage to activate the protease domain in vivo

Joy L. Silen & David A. Agard

Department of Biochemistry and Biophysics, and
The Howard Hughes Medical Institute, University of California.
San Francisco, California 94143, USA

α-lytic protease, an extracellular serine protease of Lysobacter enzymogenes 495, is synthesized as a pro-protein. Previously it has been shown that when expressed in Escherichia coli, the protein is autocatalytically processed in the periplasmic space, and that the functional protease domain accumulates extracellularly. Engineered proteins lacking the 166 amino-acid pro-region were enzymatically inactive and remained cell-associated. By independently expressing the pro- and protease domains in vivo, evidence is provided here that direct covalent linkage is not required for production of active protease. We postulate that the pro-region acts as a template to promote the folding of the protease domain into an active configuration. Our results, combined with recent experiments on the evolutionarily unrelated subtilisin E (ref. 3), suggest that the ability of the pro-region of these bacterial proteases to facilitate folding of their protease domains is not a curiosity of a single system, but may reflect a general property of extracellular bacterial serine proteases.

On the basis of denaturation and renaturation experiments on a wide variety of small proteins, it seems that small, single-subunit, globular proteins fold spontaneously to reach a minimum energy state. For example, Anfinsen demonstrated that ribonuclease A could be unfolded and then refolded with full restoration of activity. Unexpectedly, two small bacterial serine proteases, subtilisin (J. Wells, personal communication) and α-lytic protease (J. Richards, personal communication) could not be refolded. Experiments in both systems indicated that the pro-region, which is covalently attached to, but only transiently associated with the protease domain, is necessary for correct folding of these enzymes. Several different models can be proposed for the role of the pro-region in folding the protease domain (Fig. 1). In models 1 and 2, the properly folded protease is considered to be at an energy minimum, but is kinetically inaccessible. That is, there are one or more non-productive folding pathways leading to improperly folded and possibly aggregated protein that have a lower transition-state energy and higher ground-state energy than the productive pathway. The pro-region would then facilitate production of active protease, either by stabilizing the transition state for the correct pathway (Fig. 1, model 1) or by destabilizing the non-productive pathways (Fig. 1, model 2). Unfortunately, it is not yet possible to distinguish between these two models as this requires a detailed kinetic analysis using purified components. Model 3 (Fig. 1a, b), however, which depends on the energy liberated from cleavage of the precursor, can be tested. In this model, the functional protease is not at an energy minimum (the misfolded forms on the non-productive pathway have lower energies), but is kinetically trapped. In such a model, the pro-region would act as in model 1 to lower the kinetic barrier, but in addition, the energy released by cleaving the precursor is required to shift the overall equilibrium in favour of the productive pathway. Once formed, the active high-energy protease would be unstable in the presence of functional pro-domain (Fig. 1b). To avoid unfolding active protease and subsequent accumulation in the lower-energy misfolded state, the pro-region must be physically separated from the protease or inactivated.

To test if the physical linkage and its subsequent cleavage plays a direct part in the folding process (model 3), it was necessary to independently express the pro- and protease domains within the periplasmic space. Expression systems with signal sequences were employed because the protease has three disulphide bonds and thus requires an oxidizing environment to fold properly. The expression construct, pCOMP5 (Fig. 2), uses the phoA promoter and signal sequence fused to the protease domain and the lpp/lac promoter and ompA signal sequence fused to the pro-region. This construct allows induction of the pro-region by isopropyl-β-D-thiogalactoside (IPTG) and the protease domain by phosphate starvation. Only the dual conditions of phosphate starvation and IPTG induction would allow complementation and, therefore, accumulation of the active enzyme.

The results of the induction experiment are shown in Fig. 3. As expected, independent induction of either the protease or pro-domains results in little or no activity. The low level of proteolytic activity seen in the low-phosphate control culture, in which only the protease domain is induced, probably results from the basal expression of the pro-region by the lpp/lac promoter. In the cultures containing low phosphate plus IPTG, in which both promoters are induced, α-lytic protease activity...
reaches levels more than 30 times that of the low-phosphate control culture. As the accumulation of active α-lytic protease occurs after the addition of IPTG and follows the induction of cellular alkaline phosphatase, it is clear that co-induction is required for α-lytic protease production.

These experiments, and the in vitro experiments with subtilisin, demonstrate the independence of the folding process from the direct linkage between the pro- and protease domains, thereby eliminating the kinetic trapping model (Fig. 1, model 3). By uncoupling the irreversibility of bond cleavage from the folding process, the thermodynamics of folding of the protease domain can be more accurately considered, and more easily investigated experimentally. Because active α-lytic protease displays remarkable temperature stability, resistance to autolysis, and a high degree of structural rigidity, there is probably a high-energy barrier close to the folded state that provides the active enzyme with its high stability, as in model 1. Apparently, this barrier is too high to be traversed unaided. Thus, the pro-region can be thought of as a template that preferentially binds to, and stabilizes, the transition state for folding, just as an enzyme binds and stabilizes the transition state for catalysis of a reaction.

It is quite remarkable that these two classes of serine protease, which are unrelated in structure and sequence, have, through convergent evolution, developed both a spatially identical Asp-His-Ser catalytic triad and what appears to be a similar folding mechanism. Molecular analysis of the genes for a wide variety of secreted proteases from both Gram-positive and Gram-negative bacteria, reveals that these enzymes are also synthesized in precursor form. The widespread use of pro-regions by extracellular bacterial serine proteases indicates that these domains must have an extremely important function.

The folding activity of these pro-regions is reminiscent of the recently discovered class of proteins, termed chaperonins, which facilitate the folding and assembly of multi-subunit proteins in chloroplasts, mitochondria and of bacteriophage in E. coli.